The realization space is [1 1 -x1^2 0 0 1 x1 - 1 -x1^2 0 1 x1 - 1] [0 1 -x1 + 1 1 0 0 x1 - 1 -x1 + 1 x1 - 1 -x1^2 + x1 x1^2 - x1] [0 0 0 0 1 1 -x1^2 + x1 - 1 -x1^4 + x1^3 - x1^2 -x1 x1^2 - x1 + 1 -x1^2 + x1 - 1] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (x1^10 - 3*x1^9 + 4*x1^8 - 3*x1^7 + x1^6) avoiding the zero loci of the polynomials RingElem[x1, x1^2 - x1 + 1, x1 - 1, x1 + 1, x1^3 - x1^2 + 1, x1^4 - 2*x1^3 + x1 - 1, x1^3 - x1 + 1, x1^3 - x1^2 + x1 + 1, x1^2 - x1 - 1, x1^2 + 1]